[Seminario] Seminario CAPDE Gyula Csato

Duvan Henao dhenao en mat.puc.cl
Jue Jun 2 09:12:57 CLT 2016


Estimados todos, 






los invitamos cordialmente al seminario CAPDE de este 


lunes 6 de junio, 5:00pm 


Sala 5 Facultad de Matemáticas, P.U.C. 


Gyula Csató (Universidad de Concepción ) 





" About Hardy-Sobolev, Moser-Trudinger and isoperimetric inequalities with densities " 


The standard isoperimetric inequality states that among all sets with a given fixed volume (or area in dimension 2) the ball has the smallest perimeter. [See the attached pdf version of the abstract for a more precise statement.] The isoperimetric problem with density is a generalization of this question: given two positive functions f and g from R^2 to R, one studies the existence of minimizers of $\int_{\partial \Omega} g(x)$ among all domains $\Omega$ such that $\int_\Omega f(x)$ equals a fixed given constant. I will talk about some results when f(x)=|x|^q and g(x)=|x|^p, where p,q are real numbers. This is a rich problem with strong variations in difficulties depending on the values of p and q. I will first give an overview on Sobolev, Hardy-Sobolev and Moser-Trudinger inequalities and establish a different kind of connections to isoperimetric inequalities with densities. Finally I will present some of the results appearing in the following references: 


    1. Csató G., An isoperimetric problem with density and the Hardy-Sobolev inequality in R^2, Differential Integral Equations, 28, Number 9/10 (2015), 971-988. 
    2. Csató G. and Roy P., Extremal functions for the singular Moser-Trudinger inequality in 2 dimensions, Calc. Var. Partial Differential Equations, 54, Issue 2 (2015), 2341-2366. 
    3. Csató G. and Roy P., The singular Moser-Trudinger inequality on simply connected domains, Comm. Partial Differential Equations, to appear. 





*** 








Esperamos contar con su presencia, 






Núcleo Milenio Centro para el Análisis de Ecuaciones en Derivadas Parciales 

------------ próxima parte ------------
Se ha borrado un adjunto en formato HTML...
URL: <http://listas.dim.uchile.cl/pipermail/seminario/attachments/20160602/2f064ab1/attachment-0001.html>
------------ próxima parte ------------
A non-text attachment was scrubbed...
Name: 160606-GyulaCsato.pdf
Type: application/pdf
Size: 172812 bytes
Desc: no disponible
URL: <http://listas.dim.uchile.cl/pipermail/seminario/attachments/20160602/2f064ab1/attachment-0001.pdf>


Más información sobre la lista de distribución Seminario